3x^2+7x=210

Simple and best practice solution for 3x^2+7x=210 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+7x=210 equation:


Simplifying
3x2 + 7x = 210

Reorder the terms:
7x + 3x2 = 210

Solving
7x + 3x2 = 210

Solving for variable 'x'.

Reorder the terms:
-210 + 7x + 3x2 = 210 + -210

Combine like terms: 210 + -210 = 0
-210 + 7x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-70 + 2.333333333x + x2 = 0

Move the constant term to the right:

Add '70' to each side of the equation.
-70 + 2.333333333x + 70 + x2 = 0 + 70

Reorder the terms:
-70 + 70 + 2.333333333x + x2 = 0 + 70

Combine like terms: -70 + 70 = 0
0 + 2.333333333x + x2 = 0 + 70
2.333333333x + x2 = 0 + 70

Combine like terms: 0 + 70 = 70
2.333333333x + x2 = 70

The x term is 2.333333333x.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333x + 1.361111112 + x2 = 70 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333x + x2 = 70 + 1.361111112

Combine like terms: 70 + 1.361111112 = 71.361111112
1.361111112 + 2.333333333x + x2 = 71.361111112

Factor a perfect square on the left side:
(x + 1.166666667)(x + 1.166666667) = 71.361111112

Calculate the square root of the right side: 8.447550598

Break this problem into two subproblems by setting 
(x + 1.166666667) equal to 8.447550598 and -8.447550598.

Subproblem 1

x + 1.166666667 = 8.447550598 Simplifying x + 1.166666667 = 8.447550598 Reorder the terms: 1.166666667 + x = 8.447550598 Solving 1.166666667 + x = 8.447550598 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = 8.447550598 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = 8.447550598 + -1.166666667 x = 8.447550598 + -1.166666667 Combine like terms: 8.447550598 + -1.166666667 = 7.280883931 x = 7.280883931 Simplifying x = 7.280883931

Subproblem 2

x + 1.166666667 = -8.447550598 Simplifying x + 1.166666667 = -8.447550598 Reorder the terms: 1.166666667 + x = -8.447550598 Solving 1.166666667 + x = -8.447550598 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + x = -8.447550598 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + x = -8.447550598 + -1.166666667 x = -8.447550598 + -1.166666667 Combine like terms: -8.447550598 + -1.166666667 = -9.614217265 x = -9.614217265 Simplifying x = -9.614217265

Solution

The solution to the problem is based on the solutions from the subproblems. x = {7.280883931, -9.614217265}

See similar equations:

| x^2-20=10x | | -17=-4(-2)+9 | | ab*b+ab*b+2a*a*ab-ba*a*a= | | 3-u=3w+2w | | -3=-4(3)+9 | | u=3w+2w | | 3sinx+1=2sinx | | 2x^2+9x=440 | | 29=-4(-5)+9 | | (x)4+(y)3=63 | | p+q^2=14 | | 5(-3)-2(-4)=-7 | | 45-3x=-6 | | 5(6)-2(1)=-7 | | y=-4(7)+34 | | (2t+4)3+6(5t)-(-8)= | | 3t+20=2t+10 | | 6=-4(7)+b | | y=ln(x^2+54x) | | (x-sqrt(7))=0 | | 5(-2)-2(7)=-7 | | 5=74x | | .05x-.25=.02x+.44 | | ln*4*x^2=21 | | y=1/6(2)-5.4 | | 5(4)-2(-8)=-7 | | 16x^4-3x^2=13 | | -6+3-k+3k=k-4 | | -5=1/6(2)+b | | 4=9n | | 2-5a=13-2a | | -16.04+2.6f=-14.21+2.7f |

Equations solver categories